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Introduction

Contributions

[] Extend Granger causality and partial correlation graphs for
time series to the time-frequency domain using wavelets

[] Describe local stationarity in terms of local graphs

[] Graph recovery from empirical data (graph structure learning,
graph estimation)
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Introduction 1-2
Related Literature

Partial correlation graphs for multivariate time series
[ generalize classical Gaussian concentration graphical models
(] indicate the pairwise conditional linear dependence
[-] account for the contemporaneous and lagged influences

Granger causal graphs for multivariate time series
[ an effect cannot precede its cause in time, (Granger, 1969)
[ alternative to intervention-based causality (Pearl, 1995)
[ account for lagged influences

Brillinger (1981), Brillinger (1996), Dahlhaus (2000), Eichler
(2000), Dahlhaus and Eichler (2003), Eichler (2007), Eckardt
(2015) - review study; Barigozzi and Brownless (2014)
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Graphical models for time series
Granger Causality Graph

Partial Correlation Graph
Frequency domain representation
Wavelet graphs

Graph estimation
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Graphical models for time series 2-1

Graphical Models

A graph G = (V, £) consists of:
[ a set of vertices V = {vi,..., v} < o0
[] a set of edges £ CV x V, ej = (vi, vj)

» undirected edges e; € £ < ¢ € £, undirected graph
> directed edges e;_,; € £, directed graph

[J optional: loops, multiple edges (multigraph), mixed graph
(directed and undirected edges)

Usually, v; € V represents a random variable or process.
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Graphical models for time series 2-2
Graphical Models for Time Series

k-dimensional stationary multivariate time series Xy (t)
[] XV(t) = {Xi(t)}iGVv teZ, V= {17 ) k}
[ Xw\s(t) = {Xi(t)}iev\s, forany S C V

The time series graph of a process Xy
(] vertex v; refers to the X; component processes of Xy

Linear dependence graphs
1 Conditional orthogonality: X; and X; are conditionally
uncorrelated after removing the linear effects of Xg
Xi L X | Xws

Remark: For Gaussian time series “ 1" =~ independence;
factorization of the joint distribution in marginals of subgraphs
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Granger Causality Graph

[1 X; is linearly nocausal for X; relative to the process Xy,
denoted by X; » X; | Xy if

Xj(t) L Xi(t) | X iy (2),

for 5(5 = {X5(z),z < t}.
[] X; and X; are contemporaneously uncorrelated relative to
the process Xy, denoted by X; « X; | Xy if

Xi(£) AL X;(t) | Xv (1), Xin iy (2)-

Definition: The Granger causality graph G = (V, &) for a
stationary process Xy is a mixed graph given by

(i) einsj & £CC &X; = X | Xv,

(ii) ej & E°C &X; = X; | Xy.
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Graphical models for time series 2-4
Partial Correlation Graph for Time Series
Definition: The partial correlation graph G = (V, ) for a
stationary process Xy is given by

€jj §é FAR=N X,‘ A )<J | XV\{i,j}
=1 COV(€i|V\{i,j}(t)’5j|V\{i,j}(t + U)),VU ez

EiV\(ig} = Z 7" ()X iy (£ — )

U=—00

(M:’Pt dl."pt) = arg min E(X; Z di(u) Xy iy (t = u))?

wisdi oo
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Example: Five-dimensional VAR(2)-process with parameters
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An={z 1 2 o ol.Aa2=loo 00 0. L=l L 1 00
000 -% 1 oo Lo i 0 0 10
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2 4 2 4
1 3 5 1 3 5
Granger causality graph (left) and partial correlation (right) - moralization
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Frequency Domain Formulation

Partial cross-spectrum b/w X; and X; at frequency w € [—7, 7]
1 +oo

“+o0
vt (@) = 5 Do D v et +u)| e

t=—0o0 Lu=—0o0

1 X ,
=5 cov(ei iy (£), g iy (£ + u))e "
u=—00
(] is the Fourier transform of the cross-correlation function
[J is a measure of covariance b/w &;j\\ (i jy and gjjy\fij)

= Xi L Xj | X\ (i & fv\gijy (@) = 0,Vw
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Partial Spectral Coherence

Observation: The estimation of residuals &\ f; j1(t) is
computationally intensive.

Alternative: If the spectral matrix fy(w) = {fj(w)}ijev is regular
and g(w) := f(w)~! then the partial spectral coherence matrix
is R(w) = —diag(g(w)) '/?g(w)diag(g(w)) /2, whose elements
can be shown to satisfy

fipv(iy (@)

T

Fivaiiy @i (@)]2
— X; AL )(1 ’ XV\{i,j} = RIJ|V\{IJ}(W) = O,Vw iS4 gU(W) = O,VU.)
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Vector Autoregressive Processes

p
t) = AX(t—j)+e(t), e(t) ~N(0,%.)
=1

Aj are k x k matrices. Let A(z) := 1 — J’-’Zl A;zP. The spectral
density matrix of representation X(t) is
1 . :
f(w) = EA_l(e_’“)ZEA_l(e’“)T
and
g(w) = f(w)™t =2rnAE“) T . A(e™™), T. =x%

Then
pVp+tu

gie Y, Zra,ﬂAﬂ JAj(h+u)=0, (u=—p,---,p)

h=0Vu j,i=1
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Localized Partial Correlation Graph

For locally stationary multivariate time series, wavelet-based
methods

[] allow time varying analysis of spectral behavior
[ characterize dependence in time-frequency domain
] similar to applying linear filters locally

[ local covariance functions, local cross-spectra and local
coherence

Remark: If the time series are stationary, their spectral behavior
will be constant over time.
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Wavelets
[ “Mother wavelet” 1) € L>(R) s.t.

/ (t)dt = 0 admissibility condition

oo
/ P2(t)dt = ||1]|*> = 1 'unit’ energy property.
— 0o

[1 Families of basis functions 1, s(t)

NG

7 location and s scale (pseudo-frequency); |9+ s|| =1

wT,s(t):i (T), seRY,7eR (1)

Note: We will consider complex wavelets further on.
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Example: Morlet Wavelet

Marlet Wavelet Translated by +4
1 1
0.5 1 05
0 1 0
=05 -0.5
1 -1
=10 -5 0 5 10 —10 -5 4] 4 10
Dilated by +2 Dilated by +2 & Translated by -4
1 1
05 0.5
] 0
-0.5 -0.5
-1 -1
—10 -5 0 5 10 -10 -4 o 5 10

Morlet wavelet under translation and dilation
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Wavelet Transform

Wavelet coefficients w.r.t. X;

Wi(r,s) = (Xi, ¥rs)
1 .
=7 > Xi(t)vrs(t)

(+) stands for the complex conjugate. Additionally, a frequency
domain representation of W;(r,s) follows as

VV,‘ w \/|? Z X waT St) lwt

t=—o0

where f,, _is the Fourier transform of the wavelet function 1, s(t).
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Wavelet graphs

'Adaptive’ Window
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Time-frequency boxes of two wavelet basis
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Parseval’'s Relation: Extension to Wavelets

Recall: The inner product of two time series equals the inner
product of their Fourier transform.

[J Xi(t) can be recovered from the wavelet transform

1 [t ptoe
X,'(t) = Cw/_oo /_Oo ?V‘/i(T,s)ﬁlﬁT’s(t)des

[] For two processes Xi(t) and Xj(t), the energy in the time
domain is preserved in the time-frequency domain

1 too 400 g .
<x,-xj>:cw/_oo /_Oo Wi, $)Wi(7 )l drds.

for a finite constant C satisfying
] 2
Cy = / () dw < 0.
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Partial Cross Wavelet

[J Cross-wavelet coefficients - can be interpreted as a localized

measure of correlation between two time series
VVU(Tv 5) = VVI'(Tv S)Wj(Tv 5)
[J Partial cross-wavelet
Wijv\qijy (1, 5) = Wi(,s)
—1
— Wiv\ (i} (T, S )W (i w4y (75 8) T Winn i jy (75 5)

It extends a result for partial cross-spectrum (Brillinger, 1981)
and involves inversion of (k —2) x (k — 2) dimensional matrix;
alternatively solve via recursion formula.
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Wavelet graphs

Partial Wavelet Coherence

[J Partial wavelet coherence (PWC)

|Wijiv\{ijy (7, 9)]
1
|Wiiv\ i j3 (75 ) Wijiw (i jy (75 9) |2

Rijjw\{ijy (1, 5) =

0< ’Rulv\{,",}(T s)|? < 1, interpreted as a localized
correlation in the time-frequency domain

Remark. X; 1L X | XV\{,J} - R,'j‘\/\{,'J}(T,S) =0,Vs, 7 &
‘ J|V\{,J}(T 5)| = 0 VS T
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Undirected Wavelet Dependence Graph

For Xy (t) a multivariate stochastic process evolving in discrete
time a wundirected wavelet dependence graph is an undirected
multigraph G = (V, £) in which any v; € V encodes the i-th
component X;(t) of Xy (t) s.t. at fixed scale s

Xi,s A Xj,s | XV\{i,j},s < €jjs ¢ gs
<~ Rij|V\{i,j}(7—7 S) = O,VT

where & is a scale-specific subset and it holds that £ = U&;.
Remark: A partial correlation graph can be obtained from the

multigraph by replacing any multiedge by a single edge.
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Factorization of Wavelet Spectral Matrix

Wavelet spectral matrix WS(7,w) = {WSj;(T,w)}ijev, where
entries are frequency specific equivalents of W; ;(7,s). For fixed 7
(we omit indexing 7 for exposition purposes)

WS(r,w) = lUT\JTTT,

where V., the minimum-phase spectral density matrix, produces a
causal filter B, with a causal inverse s.t.

l27rw B lk27rw
§ T,k 7

error covariance matrix X, . = 7_7087',0’ minimum-phase transfer
function H, = W.B . In time domain, V. (z) = 332, B, k2%,
with W, (0) = B upper triangular matrix with positive diagonal.
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Granger Causality Spectra

Geweke (1982), Geweke (1984)
[J Pairwise Granger causality (PGC)

WS;(1,w)

WSji(r,) (z - 23,,,-/%-) Hy ()2

)

GC,'_>J'(T, w) = |Og

[] Conditional Granger causality (CGC)
i (Xi, Xj)
7—|— )
QJ:['(T;W)ZT,jj(va)gaXV\{i,j)ij (Taw)
where ¥ 5(X;, Xj) and X, ji(X;, Xj, Xy\(ij) are the variance

of the error when regressing X; on past values of X; and Xy,
Qjj are functions of X, . and H;, (see Ding et al., 2006).
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Directed Wavelet Dependence Graph

For Xy(t) a multivariate stochastic process evolving in discrete
time a directed wavelet dependence graph is a directed multiedge
graph G°C = (V,£%C) in which any v; € V encodes the i-th
component X;(t) of Xy(t) s.t. at fixed scale s
Xis »1 Xjs | Xv\(ijy.s € iy & EC
& GCiyjiv\(ijy,s(T) = 0,97

where GCjjj\\ (j),s(T) scale specific version of the CGC, ££€ is a
scale-specific subset and it holds that £6¢ = UESC.

Remark: A Granger causality graph can be obtained by replacing
same-directional subset of an multiedge by at most one directed
edge; together with an undirected simple graph obtained from X, ..
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Model Selection and Parameter Estimation

[ Identify null entries of the precision matrix, Dempster (1972)
[] Sparsity: shrinkage, computational savings

(] Main approaches

» Hypothesis testing (Edwards, 2000)

Simultaneous confidence interval (Drton and Perlman, 2004)
Neighborhood search (Meinshausen and Biihimann, 2006)
Graphical Lasso: Friedman, Hastie and Tibshirani (2008)
Bayesian approaches (Wong et al., 2003; Dobra et al., 2004)
Greedy methods (Pradeep et al, 2012)

Measure method approaches, e.g. Frobenius norm (Rothman
et al., 2008; Lam and Fan, 2008)
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Final Remarks 6-1
Conclusions

Wavelet methods
(] useful to analyze time-varying nonstationary time series

[ recover linear filters and error covariance matrices from
spectral representations

[ easy to derive the graph structure if new components are
added to the MTS

Challenges
(] Graph estimation

[ Directed graphs for contemporaneous/instantaneous
correlations
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