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Introduction 1-1

Contributions

� Extend Granger causality and partial correlation graphs for
time series to the time-frequency domain using wavelets

� Describe local stationarity in terms of local graphs

� Graph recovery from empirical data (graph structure learning,
graph estimation)
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Related Literature

Partial correlation graphs for multivariate time series

� generalize classical Gaussian concentration graphical models

� indicate the pairwise conditional linear dependence

� account for the contemporaneous and lagged in�uences

Granger causal graphs for multivariate time series

� an e�ect cannot precede its cause in time, (Granger, 1969)

� alternative to intervention-based causality (Pearl, 1995)

� account for lagged in�uences

Brillinger (1981), Brillinger (1996), Dahlhaus (2000), Eichler
(2000), Dahlhaus and Eichler (2003), Eichler (2007), Eckardt
(2015) - review study; Barigozzi and Brownless (2014)
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Graphical Models

A graph G = (V, E) consists of:

� a set of vertices V = {v1, . . . , vk} <∞
� a set of edges E ⊆ V × V, eij = (vi , vj)

I undirected edges eij ∈ E ⇔ eji ∈ E , undirected graph

I directed edges ei→j ∈ E , directed graph

� optional: loops, multiple edges (multigraph), mixed graph

(directed and undirected edges)

Usually, vi ∈ V represents a random variable or process.

Wavelet Graph
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Graphical Models for Time Series

k-dimensional stationary multivariate time series XV (t)

� XV (t) = {Xi (t)}i∈V , t ∈ Z, V = {1, . . . , k}
� XV \S(t) = {Xi (t)}i∈V \S , for any S ⊆ V

The time series graph of a process XV

� vertex vi refers to the Xi component processes of XV

Linear dependence graphs

� Conditional orthogonality : Xi and Xj are conditionally
uncorrelated after removing the linear e�ects of XS

Xi ⊥⊥ Xj | XV \S

Remark: For Gaussian time series �⊥⊥� ≈ independence;
factorization of the joint distribution in marginals of subgraphs
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Granger Causality Graph

� Xi is linearly nocausal for Xj relative to the process XV ,
denoted by Xi 9 Xj | XV if

Xj(t) ⊥⊥ X̃i (t) | X̃V \{i}(t),

for X̃S = {XS(z), z < t}.
� Xi and Xj are contemporaneously uncorrelated relative to

the process XV , denoted by Xi � Xj | XV if

Xi (t) ⊥⊥ Xj(t) | X̃V (t),XV \{i ,j}(t).

De�nition: The Granger causality graph G = (V, E) for a
stationary process XV is a mixed graph given by
(i) ei→j /∈ EGC ⇔Xi 9 Xj | XV ,
(ii) eij /∈ EGC ⇔Xi � Xj | XV .
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Partial Correlation Graph for Time Series

De�nition: The partial correlation graph G = (V, E) for a
stationary process XV is given by

eij /∈ E ⇔ Xi ⊥⊥ Xj | XV \{i ,j}

⇔ cov(εi |V \{i ,j}(t), εj |V \{i ,j}(t + u)),∀u ∈ Z

εi |V \{i ,j} := Xi (t)− µopti −
+∞∑

u=−∞
dopt
i (u)XV \{i ,j}(t − u)

(µopti , dopt
i ) = arg min

µi ,di

E(Xi (t)− µi −
+∞∑

u=−∞
di (u)XV \{i ,j}(t − u))2
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Example: Five-dimensional VAR(2)-process with parameters

Causality and graphical models in time series analysis 5
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Fig. 2. Causality graph GC for the VAR process in Example 2.2.

(i) a−→ b /∈ EC ⇔ Xa 9 Xb [XV ],

(ii) a−− b /∈ EC ⇔ Xa � Xb [XV ].

For simplicity we will speak only of causality graphs instead of Granger
causality graphs. We implicitly assume that each component also depends on
its own past. This could be expressed by directed self-loops. Since the insertion
of these loops does not change the separation properties for the graph we omit
these loops for the sake of simplicity.

The relation between the TSC-graph GTS = (VTS, ETS) and the causality
graph GC = (V,EC) is simple:

Proposition 2.5 (Aggregation) Let GC and GTS be the causality graph and the
TSC-graph, respectively, of a stationary process X. Then we have

(i) a−→ b /∈ EC ⇔ (a, t− u)−→ (b, t) /∈ ETS ∀u > 0 ∀t ∈ Z,

(ii) a−− b /∈ EC ⇔ (a, t)−− (b, t) /∈ ETS ∀t ∈ Z.

Proof (i) follows from a replicated application of the intersection property (C5)
in Lauritzen (1996). Details are omitted. (ii) is straightforward. 2

Example 2.2 (contd) From Proposition 2.5 and (2.2) it follows that a −→
b /∈ EC if and only if Aba(1) = Aba(2) = 0. The resulting causality graph of
X = {X(t)} is shown in Fig. 2. From this graph we can see for example that
X1 is noncausal for X4 relative to the full process. More intuitively, the directed
paths from 1 to 4 suggest that X1 causes X4 indirectly. This indirect cause
seems to be mediated by X3 since all paths from 1 to 4 intersect 3. In the next
section we will see that such causality relations indeed can be derived formally
from the graph.

2.3 Partial correlation graphs

We now introduce the partial correlation graph for a time series (Dahlhaus 2000).
This undirected graph is the counterpart of a concentration graph for ordinary
variables. The graph has a simple separation concept and allows additional
conclusions about the dependence structure of the series.

Definition 2.6 (Partial correlation graph) The partial correlation graph (PC-
graph) GPC = (V,EPC) of a stationary process X is given by

a−− b /∈ EPC ⇔ Xa ⊥ Xb |XV \{a,b}.

There exists a nice characterization of PC-graphs in terms of the inverse of
the spectral matrix of the process. Let fab(λ) be the cross-spectrum between

6 R. Dahlhaus and M. Eichler
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Fig. 3. Partial correlation graph GPC for the VAR process in Example 2.2.

Xa and Xb, f(λ) =
(
fab(λ)

)
a,b∈V be the spectral matrix, and g(λ) = f(λ)−1 its

inverse. Then it can be shown (see Proposition 2.7) that

a−− b 6∈ EPC ⇔ gab(λ) = 0 for all λ ∈ [−π, π].

that is, we have a similar characterization as for concentration graphs. More
important the absolute rescaled inverse |dab(λ)| = |gab(λ)|/

(
gaa(λ)gbb(λ)

)
1/2 is

a measure for the strength of the “connection” between Xa and Xb. To see this
let Ya|V \{a,b}, Yb|V \{a,b} the residual series of Xa, resp. Xb after the linear effects
of the other components XV \{a,b} have been removed. Then the partial cross
spectrum fab|V \{a,b}(λ) is defined as the cross spectrum between the residual
series Ya|V \{a,b} and Yb|V \{a,b}, and

Rab|V \{a,b}(λ) = fab|V \{a,b}(λ)/
(
faa|V \{a,b}(λ)fbb|V \{a,b}(λ)

) 1
2 (2.3)

is the partial spectral coherence (cf. Brillinger, 1981, Chap. 7 and 8), which is a
kind of partial correlation between Xa and Xb “at frequency λ”. Then we have

Proposition 2.7 Under the regularity assumptions on X we have for a 6= b

gaa(λ) = 1/faa|V \{a}(λ) and dab(λ) = −Rab|V \{a,b}(λ).

In particular dab(λ) = 0 for all λ ∈ [−π, π] if and only if a−− b 6∈ EPC .

For a proof see Dahlhaus (2000), Theorem 2.4.

Example 2.2 (contd) For general VAR processes of the form (2.1) we have
f(λ) = (2π)−1A−1(e−iλ)ΣA−1(eiλ)′ with A(z) = I −A(1)z− . . .−A(p)zp. Con-
sequently g(λ) = f(λ)−1 = 2πA(eiλ)′Σ−1A(e−iλ) and the restriction gab ≡ 0
thus leads to the following parameter constraints

p∧p+h∑
u=0∨h

d∑
j,k=1

KjkAja(u)Akb(u+ h) = 0, (h = −p, . . . , p) (2.4)

with A(0) = I and K = Σ−1. From these constraints we can derive the PC-graph
for the VAR(2)-model from Example 2.2. Assuming that the terms in (2.4) are
nonzero whenever one summand is nonzero we obtain an edge a −− b ∈ EPC

whenever a and b are connected by a directed or an undirected edge in GC.
Additionally we find that for a = 1 and b = 4 the equation for h = 1 yields
K12A24(1) 6= 0 which implies that 1 and 4 are also adjacent in GPC. This

Granger causality graph (left) and partial correlation (right) - moralization
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Frequency Domain Formulation

Partial cross-spectrum b/w Xi and Xj at frequency ω ∈ [−π, π]

fij |V \{i ,j}(ω) =
1

2π

+∞∑

t=−∞

[
+∞∑

u=−∞
εi |V \{i ,j}(t)εj |V \{i ,j}(t + u)

]
e−iωt

=
1

2π

+∞∑

u=−∞
cov(εi |V \{i ,j}(t), εj |V \{i ,j}(t + u))e−iωt

� is the Fourier transform of the cross-correlation function

� is a measure of covariance b/w εi |V \{i ,j} and εj |V \{i ,j}

→ Xi ⊥⊥ Xj | XV \{i ,j} ⇔ fij |V \{i ,j}(ω) = 0,∀ω
Wavelet Graph
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Partial Spectral Coherence

Observation: The estimation of residuals εi |V \{i ,j}(t) is
computationally intensive.

Alternative: If the spectral matrix fV (ω) = {fij(ω)}i ,j∈V is regular
and g(ω) := f (ω)−1 then the partial spectral coherence matrix

is R(ω) = −diag(g(ω))−1/2g(ω)diag(g(ω))−1/2, whose elements
can be shown to satisfy

Rij |V \{i ,j}(ω) =
fij |V \{i ,j}(ω)

[
fii |V \{i ,j}(ω)fjj |V \{i ,j}(ω)

] 1
2

.

→ Xi ⊥⊥ Xj | XV \{i ,j} ⇔ Rij |V \{i ,j}(ω) = 0,∀ω ⇔ gij(ω) = 0, ∀ω

Wavelet Graph



Frequency domain representation 3-3

Vector Autoregressive Processes

X (t) =

p∑

j=1

AjX (t − j) + ε(t), ε(t) ∼ N(0,Σε)

Aj are k × k matrices. Let A(z) := I −∑p
j=1

Ajz
p. The spectral

density matrix of representation X (t) is

f (ω) =
1

2π
A−1(e−iω)ΣεA

−1(e iω)>

and

g(ω) = f (ω)−1 = 2πA(e iω)>ΓεA(e−iω), Γε = Σ−1ε .

Then

gij ⇔
p∨p+u∑

h=0∨u

k∑

j ,l=1

Γε,jlAji (h)Alj(h + u) = 0, (u = −p, · · · , p).
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Localized Partial Correlation Graph

For locally stationary multivariate time series, wavelet-based
methods

� allow time varying analysis of spectral behavior

� characterize dependence in time-frequency domain

� similar to applying linear �lters locally

� local covariance functions, local cross-spectra and local
coherence

Remark: If the time series are stationary, their spectral behavior
will be constant over time.
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Wavelets

� �Mother wavelet� ψ ∈ L2(R) s.t.
∫ ∞

−∞
ψ(t)dt = 0 admissibility condition

∫ ∞

−∞
ψ2(t)dt = ‖ψ‖2 = 1 'unit' energy property.

� Families of basis functions ψτ,s(t)

ψτ,s(t) =
1√
s
ψ

(
t − τ
s

)
, s ∈ R+, τ ∈ R (1)

τ location and s scale (pseudo-frequency); ‖ψτ,s‖ = 1

Note: We will consider complex wavelets further on.
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Example: Morlet Wavelet

Morlet wavelet under translation and dilation
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Wavelet Transform

Wavelet coe�cients w.r.t. Xi

Wi (τ, s) = 〈Xi , ψτ,s〉

=
1√
s

+∞∑

−∞
Xi (t)ψτ,s(t)

(·) stands for the complex conjugate. Additionally, a frequency
domain representation of Wi (τ, s) follows as

Wi (ω) =

√
|s|

2π

∞∑

t=−∞
Xi (t)fψs,τ (st)e iωt ,

where fψs,τ is the Fourier transform of the wavelet function ψτ,s(t).

Wavelet Graph



Wavelet graphs 4-5

'Adaptive' Window

Time-frequency boxes of two wavelet basis
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Parseval's Relation: Extension to Wavelets

Recall : The inner product of two time series equals the inner
product of their Fourier transform.

� Xi (t) can be recovered from the wavelet transform

Xi (t) =
1

Cψ

∫ +∞

−∞

∫ +∞

−∞

1

s2
Wi (τ, s)ψτ,s(t)dτds

� For two processes Xi (t) and Xj(t), the energy in the time
domain is preserved in the time-frequency domain

〈XiXj〉 =
1

Cψ

∫ +∞

−∞

∫ +∞

−∞

1

s2
|Wi (τ, s)Wi (τ, s)|dτds,

for a �nite constant Cψ satisfying

Cψ =

∫ ∞

−∞

|ψ(ω)|2
|ω| dω <∞.
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Partial Cross Wavelet

� Cross-wavelet coe�cients - can be interpreted as a localized
measure of correlation between two time series

Wij(τ, s) = Wi (τ, s)Wj(τ, s)

� Partial cross-wavelet

Wij |V \{i ,j}(τ, s) = Wij(τ, s)

−WiV \{i ,j}(τ, s)WV \{i ,j}V \{i ,j}(τ, s)−1WjV \{i ,j}(τ, s)

It extends a result for partial cross-spectrum (Brillinger, 1981)
and involves inversion of (k − 2)× (k − 2) dimensional matrix;
alternatively solve via recursion formula.
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Partial Wavelet Coherence

� Partial wavelet coherence (PWC)

Rij |V \{i ,j}(τ, s) =
|Wij |V \{i ,j}(τ, s)|

|Wii |V \{i ,j}(τ, s)Wjj |V \{i ,j}(τ, s)| 12

0 ≤ |Rij |V \{i ,j}(τ, s)|2 ≤ 1, interpreted as a localized
correlation in the time-frequency domain

Remark. Xi ⊥⊥ Xj | XV \{i ,j} ⇔ Rij |V \{i ,j}(τ, s) = 0,∀s, τ ⇔
|Wij |V \{i ,j}(τ, s)| = 0,∀s, τ
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Undirected Wavelet Dependence Graph

For XV (t) a multivariate stochastic process evolving in discrete
time a undirected wavelet dependence graph is an undirected
multigraph G = (V, E) in which any vi ∈ V encodes the i-th
component Xi (t) of XV (t) s.t. at �xed scale s

Xi ,s ⊥⊥ Xj ,s | XV \{i ,j},s ⇔ eij ,s /∈ Es
⇔ Rij |V \{i ,j}(τ, s) = 0, ∀τ

where Es is a scale-speci�c subset and it holds that E = ∪Es .
Remark: A partial correlation graph can be obtained from the

multigraph by replacing any multiedge by a single edge.
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Factorization of Wavelet Spectral Matrix

Wavelet spectral matrix WS(τ, ω) = {WSij(τ, ω)}i ,j∈V , where
entries are frequency speci�c equivalents of Wi ,j(τ, s). For �xed τ
(we omit indexing τ for exposition purposes)

WS(τ, ω) = ΨτΨτ
>
,

where Ψτ , the minimum-phase spectral density matrix, produces a
causal �lter Bτ with a causal inverse s.t.

Ψτ (e i2πω) =
∞∑

k=0

Bτ,k(e ik2πω),

error covariance matrix Στ,ε = Bτ,0B
>
τ,0, minimum-phase transfer

function Hτ = ΨτB
−1
τ,0 . In time domain, Ψτ (z) =

∑∞
k=0

Bτ,kz
k ,

with Ψτ (0) = Bτ,0 upper triangular matrix with positive diagonal.

Wavelet Graph
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Granger Causality Spectra

Geweke (1982), Geweke (1984)

� Pairwise Granger causality (PGC)

GCi→j(τ, ω) = log
WSjj(τ, ω)

WSjj(τ, ω)−
(

Στ,ii − Σ2

τ,ij/Στ,jj

)
|Hτ,ij(ω)|2

,

� Conditional Granger causality (CGC)

GCi→j |V \{i ,j}(τ, ω) = log
Στ,jj(Xi ,Xj)

Qjj(τ, ω)Στ,jj(Xi ,Xj ,XV \{i ,j)Qjj
>

(τ, ω)
,

where Στ,jj(Xi ,Xj) and Στ,jj(Xi ,Xj ,XV \{i ,j) are the variance
of the error when regressing Xj on past values of Xi and XV \j ,
Qjj are functions of Στ,ε and Hτ , (see Ding et al., 2006).
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Directed Wavelet Dependence Graph

For XV (t) a multivariate stochastic process evolving in discrete
time a directed wavelet dependence graph is a directed multiedge
graph GGC = (V, EGC ) in which any vi ∈ V encodes the i-th
component Xi (t) of XV (t) s.t. at �xed scale s

Xi ,s 9l Xj ,s | XV \{i ,j},s ⇔ ei→vj
/∈ EGCs

⇔ GCi→j |V \{i ,j},s(τ) = 0, ∀τ
where GCij |V \{ij},s(τ) scale speci�c version of the CGC, EGCs is a

scale-speci�c subset and it holds that EGC = ∪EGCs .

Remark: A Granger causality graph can be obtained by replacing
same-directional subset of an multiedge by at most one directed
edge; together with an undirected simple graph obtained from Στ,ε.

Wavelet Graph
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Model Selection and Parameter Estimation

� Identify null entries of the precision matrix, Dempster (1972)

� Sparsity: shrinkage, computational savings

� Main approaches

I Hypothesis testing (Edwards, 2000)
I Simultaneous con�dence interval (Drton and Perlman, 2004)
I Neighborhood search (Meinshausen and Bühlmann, 2006)
I Graphical Lasso: Friedman, Hastie and Tibshirani (2008)
I Bayesian approaches (Wong et al., 2003; Dobra et al., 2004)
I Greedy methods (Pradeep et al, 2012)
I Measure method approaches, e.g. Frobenius norm (Rothman

et al., 2008; Lam and Fan, 2008)
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Conclusions

Wavelet methods

� useful to analyze time-varying nonstationary time series

� recover linear �lters and error covariance matrices from
spectral representations

� easy to derive the graph structure if new components are
added to the MTS

Challenges

� Graph estimation

� Directed graphs for contemporaneous/instantaneous
correlations

Wavelet Graph



Bibliography 7-1

Barigozzi, M. and Brownlees, C.
NETS: Network Estimation for Time Series

Working paper, 2014

Brillinger, D.R.
Time Series: Data Analysis and Theory

New York: Holt, Rinehart and Winston. 1981

Brillinger, D.R.
Remarks Concerning Graphical Models for Time Series and

Point Processes

Revista de Econometrica 16: 1�23, 1996

Dahlhaus, R.
Graphical Interaction Models for Multivariate Time Series

Metrika 51: 157�172, 2000

Wavelet Graph



Bibliography 7-2

Dahlhaus, R. and Eichler, M.
Causality and Graphical Models in Time Series Analysis

In: P.J. Green, N.L. Hjort, and S. Richardson (Eds.): Highly
Structured Stochastic Systems. Oxford University Press,
Oxford. 115�137, 2003

Dempster, A.P.
Covariance selection

Biometrics 51: 157�175, 1972

Wavelet Graph



Bibliography 7-3

Ding, M., Chen, Y., Bressler, S.
Granger Causality: Basic Theory and Application to

Neuroscience

In: Schelter, B., Winterhalder, M., Timmer, J. (Eds.),
Handbook of Time Series Analysis: Recent Theoretical
Developments and Applications. Wiley-VCH, Berlin. 437�459,
2006

Eichler, M.
Granger-Causality Graphs for Multivariate Time Series

Technical report, University of Heidelberg, Germany, 2000

Eichler, M.
Granger Causality and Path Diagrams for Multivariate Time

Series

Journal of Econometrics 137: 334�353, 2007

Wavelet Graph



Bibliography 7-4

Eckardt, M.
Reviewing Graphical Modelling of Multivariate Temporal

Processes

In Adalbert Wilhelm and Hans A. Kestler. (eds.), Analysis of
Large and Complex Data, Springer, In press

Geweke, J.
Measurement of Linear-Dependence and Feedback between

Multiple Time-Series

J. Am. Stat. Assoc. 77: 304�313, 1982

Wavelet Graph



Bibliography 7-5

Geweke, J.
Inference and Causality in Economic Time Series

In Z. Griliches and M.D. Intriligator (eds.), Handbook of
Econometrics, Vol. 2, North-Holland, Amsterdam. 1101�1144,
1984

Granger, C.W.J.
Investigating Causal Relations by Econometric Models and

Cross-Spectral Methods

Econometrica. 37: 424�438, 1969

Pearl, J.
Causality: Models, Reasoning, and Inference

Cambridge University Press, Cambridge, UK. 2000

Wavelet Graph


	Introduction
	Graphical models for time series
	Frequency domain representation
	Wavelet graphs
	Graph estimation
	Final Remarks
	Bibliography



